The Spacecraft Design Process

John Ledyard Caltech March 2, 2000

Introduction

- The majority costs of spacecraft design are personnel and not hardware.
- Personnel costs are time related.
- Cycle time to design and test a spacecraft is highly variable (6 months to 4 years).
- Therefore it is important to understand the determinants of cycle time to understand costs

Introduction

- The major determinants of cycle time are:
 - Technical difficulty
 - Team effectiveness
 - Concurrency
- The goal is to model these in a measurable way to get at the cost/time tradeoff.

In a perfect world

• Mission planning, design, testing

• Expected time = 1 + n + m

Add some reality

- Complexity of the problem
 - The probability that unanticipated problems occur
- Efficiency and innovativeness of the team
 - The probability the team can solve the unanticipated problems easily
- Concurrency
 - The probability one can begin testing earlier in the design phase

Complexity of Problem (p)

EQUATIONS

$$E_0 = (1-p)(E_1+n+1) + pI(E_0+n) + p(1-I)(E_0+n+1)$$

$$E_1 = (1 - p)m + pI(E_1 + m) + p(1-I)(E_0 + m-1)$$

Solving for E_0 , the solution is:

$$E_0 = (m-p)/1-p + (n+1)(1-pI)/(1-p)^2 + p^2I(1-I)/(1-p)^2$$

Example numbers

- n=2, m=3
 - Minimum cycle time = 6 months
- p=3/4 (relatively hard project)
- If I=1/5 (inefficient team), $E_0=48.36$
 - Approximately the time for Pathfinder
- If I=1/2, E=36.75 (a 24% decrease).
- If I=4/5, E=26.76 (a further 27% decrease)

Concurrency and Difficulty

Concurrency is measured with two parameters:

- \bigcirc Z
 - *****n-z number of stages earlier testing begins
- 2 q
 - *probability that a problem occurs after early testing

Concurrency (z, t,q)

EQUATIONS

We redefine E_0 .

$$E_0 = 1 + E_2$$

$$E_1 = (1 - q)m + qI(E_1+m) + q(1-I)(E_0+m-1)$$

$$E_2 = t(E_1 + n - z) + (1 - t)[n + (1 - p)(E_1) + pIE_2 + p(1 - I)(E_0)$$

$$= (E_1 + n - z)(1 - p + tp) + (1 - t)p[z/p + n - z + IE_2$$

$$+ (1 - I)E_0]$$

SPECIAL CASE

When n=2, m=3, p=q=3/4

	I=0	l=1/5	I=1/2	I=4/5	I=1
t=0	57	48.4	36.8	26.8	21
t=1/5	37	32.4	26.1	20.7	17.5
t=1/2	25	22.8	19.8	17	15.4
t=4/5	19.4	18.3	16.8	15.3	14.4
t=1	17	16.4	15.5	14.6	14

Value of E_o in months

Expected time to complete =
$$E_o = \frac{m-q(1-I)}{1-q} + \frac{\lfloor 1-qI \rfloor (v+1-gI)}{(1-g)(1-q)}$$

The general model

- v,m, and gamma are mixed measures of difficulty, concurrency and the height of the "ready to test" bar
- 0<I<1 is a measure of team effectiveness
- 0<q<1 is the probability of failing testing
 - q and (v,gamma) are inversely related

Time to Complete Simulations

- Would prefer explicit solution but for now...
- Monte-Carlo study
- Two cases
 - Easy project, low testing target
 - Hard project, high testing target

Faster/Cheaper Tradeoffs

- Cost functions
 - $= C(m,q,I,v,\gamma)$
- Time to complete
 - = probability {time through < T)
- Trade-off

```
Max Prob {time < T}
```

Subject to
$$C(m,q,I,v,\gamma) < B_o$$

Future Work

- Integrate with the Koenig, Smith, Wall work on measuring team effectiveness.
- Integrate with other work measuring the "riskiness" of projects.
- Model the "ready to test" standard
- Solve for explicit solutions for
 - Prob (stop < T)
 - Variance of stopping time